A partir de cette page vous pouvez :
Retourner au premier écran avec les dernières notices... |
Catégories
> 53-XX Differential geometry > 53DXX Symplectic geometry, contact geometry > 53D25 Geodesic flows
53D25 Geodesic flows
Affiner la recherche
An introduction to infinite ergodic theory / Jon Aaronson
Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 12650 28C120 imprimé / autre CRDM 28/MESURE ET INTEGRATION Disponible 18255 28C120 imprimé / autre CRDM 28/MESURE ET INTEGRATION Disponible Equilibrium states in negative curvature / Paulin, Frédéric
Titre : Equilibrium states in negative curvature Type de document : texte imprimé Auteurs : Paulin, Frédéric, Auteur ; Pollicott, Mark, Auteur ; Barbara Schapira, Auteur Editeur : Paris : Société Mathématiques de France Année de publication : 2015 Collection : Astérisque, ISSN 0303-1179 num. 373 Importance : viii - 281 p. ISBN/ISSN/EAN : 978-2-85629-818-3 Langues : Anglais Catégories : 37-XX Dynamical systems and ergodic theory :37DXX Dynamical systems with hyperbolic behavior:37D35 Thermodynamic formalism, variational principles, equilibrium states
37-XX Dynamical systems and ergodic theory :37DXX Dynamical systems with hyperbolic behavior:37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53-XX Differential geometry :53DXX Symplectic geometry, contact geometry :53D25 Geodesic flowsMots-clés : Geodesic flow, negative curvature, Gibbs state, periods, orbit counting, Patterson density, pressure, variational principle, strong unstable foliation Index. décimale : AST Equilibrium states in negative curvature [texte imprimé] / Paulin, Frédéric, Auteur ; Pollicott, Mark, Auteur ; Barbara Schapira, Auteur . - Paris : Société Mathématiques de France, 2015 . - viii - 281 p.. - (Astérisque, ISSN 0303-1179; 373) .
ISBN : 978-2-85629-818-3
Langues : Anglais
Catégories : 37-XX Dynamical systems and ergodic theory :37DXX Dynamical systems with hyperbolic behavior:37D35 Thermodynamic formalism, variational principles, equilibrium states
37-XX Dynamical systems and ergodic theory :37DXX Dynamical systems with hyperbolic behavior:37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53-XX Differential geometry :53DXX Symplectic geometry, contact geometry :53D25 Geodesic flowsMots-clés : Geodesic flow, negative curvature, Gibbs state, periods, orbit counting, Patterson density, pressure, variational principle, strong unstable foliation Index. décimale : AST Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 21871 AST/373 imprimé / autre CRDM AST/ASTÉRISQUE Disponible Integrable Hamiltonian systems / A. V. Bolsinov
Titre : Integrable Hamiltonian systems : geometry, topology, classification Type de document : texte imprimé Auteurs : A. V. Bolsinov ; A. T. Fomenko Editeur : Boca Raton, FL : Chapman & Hall/CRC Press Année de publication : 2004 Importance : xv - 730 p. ISBN/ISSN/EAN : 978-0-415-29805-6 Langues : Anglais Langues originales : Russe Catégories : 37-XX Dynamical systems and ergodic theory :37-02 Research exposition (monographs, survey articles)
37-XX Dynamical systems and ergodic theory :37JXX Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems :37J35 Completely integrable systems, topological structure of phase space, integration methods
53-XX Differential geometry :53DXX Symplectic geometry, contact geometry :53D25 Geodesic flows
70-XX Mechanics of particles and systems :70GXX General models, approaches, and methods :70G40 Topological and differential-topological methodsMots-clés : rigid body dynamics foliations liouville equivalence geodesic flow hamiltonian systems integrable systems Index. décimale : 37C Monographie Integrable Hamiltonian systems : geometry, topology, classification [texte imprimé] / A. V. Bolsinov ; A. T. Fomenko . - Boca Raton, FL : Chapman & Hall/CRC Press, 2004 . - xv - 730 p.
ISBN : 978-0-415-29805-6
Langues : Anglais Langues originales : Russe
Catégories : 37-XX Dynamical systems and ergodic theory :37-02 Research exposition (monographs, survey articles)
37-XX Dynamical systems and ergodic theory :37JXX Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems :37J35 Completely integrable systems, topological structure of phase space, integration methods
53-XX Differential geometry :53DXX Symplectic geometry, contact geometry :53D25 Geodesic flows
70-XX Mechanics of particles and systems :70GXX General models, approaches, and methods :70G40 Topological and differential-topological methodsMots-clés : rigid body dynamics foliations liouville equivalence geodesic flow hamiltonian systems integrable systems Index. décimale : 37C Monographie Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 13742 37C31 imprimé / autre CRDM 37/SYSTEMES DYNAMIQUES, THEORIE ERGODIQUE Disponible Two classes of Riemannian manifolds whose geodesic flows are integrable / Kazuyoshi Kiyohara
Titre : Two classes of Riemannian manifolds whose geodesic flows are integrable Type de document : texte imprimé Auteurs : Kazuyoshi Kiyohara Editeur : Providence, R.I. : American Mathematical Society Année de publication : 1997 Collection : Memoirs of the American Mathematical Society, ISSN 0065-9266 num. 619 Importance : 143 p. ISBN/ISSN/EAN : 978-0-8218-0640-1 Langues : Anglais Catégories : 37-XX Dynamical systems and ergodic theory :37DXX Dynamical systems with hyperbolic behavior:37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37-XX Dynamical systems and ergodic theory :37JXX Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems :37J35 Completely integrable systems, topological structure of phase space, integration methods
37-XX Dynamical systems and ergodic theory :37JXX Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems :37J99 None of the above, but in this section
37-XX Dynamical systems and ergodic theory :37KXX Infinite-dimensional Hamiltonian systems :37K10 Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies (KdV, KP, Toda, etc.)
53-XX Differential geometry :53-02 Research exposition (monographs, survey articles)
53-XX Differential geometry :53CXX Global differential geometry :53C22 Geodesics
53-XX Differential geometry :53DXX Symplectic geometry, contact geometry :53D25 Geodesic flows
70-XX Mechanics of particles and systems :70HXX Hamiltonian and Lagrangian mechanics :70H20 Hamilton-Jacobi equationsMots-clés : liouville manifolds classification c_{2pi}-manifolds completely integrable geodesic flows Index. décimale : Mem Two classes of Riemannian manifolds whose geodesic flows are integrable [texte imprimé] / Kazuyoshi Kiyohara . - Providence, R.I. : American Mathematical Society, 1997 . - 143 p. . - (Memoirs of the American Mathematical Society, ISSN 0065-9266; 619) .
ISBN : 978-0-8218-0640-1
Langues : Anglais
Catégories : 37-XX Dynamical systems and ergodic theory :37DXX Dynamical systems with hyperbolic behavior:37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37-XX Dynamical systems and ergodic theory :37JXX Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems :37J35 Completely integrable systems, topological structure of phase space, integration methods
37-XX Dynamical systems and ergodic theory :37JXX Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems :37J99 None of the above, but in this section
37-XX Dynamical systems and ergodic theory :37KXX Infinite-dimensional Hamiltonian systems :37K10 Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies (KdV, KP, Toda, etc.)
53-XX Differential geometry :53-02 Research exposition (monographs, survey articles)
53-XX Differential geometry :53CXX Global differential geometry :53C22 Geodesics
53-XX Differential geometry :53DXX Symplectic geometry, contact geometry :53D25 Geodesic flows
70-XX Mechanics of particles and systems :70HXX Hamiltonian and Lagrangian mechanics :70H20 Hamilton-Jacobi equationsMots-clés : liouville manifolds classification c_{2pi}-manifolds completely integrable geodesic flows Index. décimale : Mem Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 14783 Mem/619 imprimé / autre CRDM Mem/MEMOIRS AMS Disponible