A partir de cette page vous pouvez :
Retourner au premier écran avec les dernières notices... |
Catégories
> 11-XX Number theory > 11EXX Forms and linear algebraic groups > 11E16 General binary quadratic forms
11E16 General binary quadratic forms
Affiner la recherche
Algebraic theory of quadratic forms / Knebusch, M.
Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 4965 11B37 imprimé / autre CRDM 11/THEORIE DES NOMBRES Disponible Binary quadratic forms / Johannes A. Buchmann
Titre : Binary quadratic forms : an algorithmic approach Type de document : texte imprimé Auteurs : Johannes A. Buchmann ; Vollmer, Ulrich Editeur : Springer-Verlag Année de publication : 2007 Collection : Algorithms and Computation in Mathematics num. 20 Importance : xiv - 318 p. ISBN/ISSN/EAN : 978-3-540-46367-2 Note générale : commande M. Borer Langues : Anglais Catégories : 11-XX Number theory:11-01 Instructional exposition (textbooks, tutorial papers, etc.)
11-XX Number theory:11EXX Forms and linear algebraic groups :11E16 General binary quadratic forms
11-XX Number theory:11RXX Algebraic number theory: global fields :11R11 Quadratic extensionsMots-clés : quadratic forms cryptography algorithmic number theory algebraic number theory Index. décimale : 11C Monographie Binary quadratic forms : an algorithmic approach [texte imprimé] / Johannes A. Buchmann ; Vollmer, Ulrich . - [S.l.] : Springer-Verlag, 2007 . - xiv - 318 p. . - (Algorithms and Computation in Mathematics; 20) .
ISBN : 978-3-540-46367-2
commande M. Borer
Langues : Anglais
Catégories : 11-XX Number theory:11-01 Instructional exposition (textbooks, tutorial papers, etc.)
11-XX Number theory:11EXX Forms and linear algebraic groups :11E16 General binary quadratic forms
11-XX Number theory:11RXX Algebraic number theory: global fields :11R11 Quadratic extensionsMots-clés : quadratic forms cryptography algorithmic number theory algebraic number theory Index. décimale : 11C Monographie Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 17823 11C217 imprimé / autre CRDM 11/THEORIE DES NOMBRES Disponible Elliptic functions / Chandrasekharan, K.
Titre : Elliptic functions Type de document : texte imprimé Auteurs : Chandrasekharan, K. Editeur : Springer-Verlag Année de publication : 1985 Collection : Grundlehren der Mathematischen Wissenschaften num. 281 Importance : xii - 189 p. ISBN/ISSN/EAN : 978-3-540-15295-8 Langues : Anglais Catégories : 11-XX Number theory:11EXX Forms and linear algebraic groups :11E16 General binary quadratic forms
11-XX Number theory:11FXX Discontinuous groups and automorphic forms :11F03 Modular and automorphic functions
33-XX Special functions (33-XX deals with the properties of functions as functions) :33EXX Other special functions:33E05 Elliptic functions and integralsMots-clés : sum of four squares quadratic form representation of integers law of quadratic reciprocity modular invariant modular functions Index. décimale : 33C Monographie Elliptic functions [texte imprimé] / Chandrasekharan, K. . - [S.l.] : Springer-Verlag, 1985 . - xii - 189 p.. - (Grundlehren der Mathematischen Wissenschaften; 281) .
ISBN : 978-3-540-15295-8
Langues : Anglais
Catégories : 11-XX Number theory:11EXX Forms and linear algebraic groups :11E16 General binary quadratic forms
11-XX Number theory:11FXX Discontinuous groups and automorphic forms :11F03 Modular and automorphic functions
33-XX Special functions (33-XX deals with the properties of functions as functions) :33EXX Other special functions:33E05 Elliptic functions and integralsMots-clés : sum of four squares quadratic form representation of integers law of quadratic reciprocity modular invariant modular functions Index. décimale : 33C Monographie Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 6277 33C57 imprimé / autre CRDM 33/FONCTIONS SPECIALES Disponible Integral matrices / Newman, M.
Titre : Integral matrices Type de document : texte imprimé Auteurs : Newman, M. Editeur : New York, N.Y. : New York,London,Academic Press Année de publication : 1972 Collection : pure and applied mathematics num. 45 Importance : xviii-224 Langues : Anglais Catégories : 11-XX Number theory:11EXX Forms and linear algebraic groups :11E16 General binary quadratic forms
15-XX Linear and multilinear algebra; matrix theory:15-02 Research exposition (monographs, survey articles)
15-XX Linear and multilinear algebra; matrix theory:15A36 Matrices of integersMots-clés : matrice entiere Index. décimale : 15C Monographie Integral matrices [texte imprimé] / Newman, M. . - New York, N.Y. : New York,London,Academic Press, 1972 . - xviii-224. - (pure and applied mathematics; 45) .
Langues : Anglais
Catégories : 11-XX Number theory:11EXX Forms and linear algebraic groups :11E16 General binary quadratic forms
15-XX Linear and multilinear algebra; matrix theory:15-02 Research exposition (monographs, survey articles)
15-XX Linear and multilinear algebra; matrix theory:15A36 Matrices of integersMots-clés : matrice entiere Index. décimale : 15C Monographie Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 1356 15C46 imprimé / autre CRDM 15/ALGEBRE LINEAIRE ET MULTILINEAIRE THEORIE DES MATRICES Disponible K-theory of forms / Bak, A.
Titre : K-theory of forms Type de document : texte imprimé Auteurs : Bak, A. Editeur : Princeton, NJ : Princeton University Press and the University of Tokyo Press Année de publication : 1981 Collection : Annals of Mathematics Studies num. 098 Importance : Viii-268 p. Langues : Anglais Catégories : 11-XX Number theory:11-02 Research exposition (monographs, survey articles)
11-XX Number theory:11EXX Forms and linear algebraic groups :11E16 General binary quadratic forms
18-XX Category theory; homological algebra :18-02 Research exposition (monographs, survey articles)
18-XX Category theory; homological algebra :18FXX Categories and geometry:18F25 Algebraic $K$-theory and $L$-theory
57-XX Manifolds and cell complexes :57-02 Research exposition (monographs, survey articles)
57-XX Manifolds and cell complexes :57RXX Differential topology :57R67 Surgery obstructions, Wall groupsMots-clés : surgery obstruction groups rings with involution k-theory groups exact sequences morita theory mayer-vietoris sequence approximation square steinberg group form parameter hermitian forms quadratic forms Index. décimale : 18B Publication collective K-theory of forms [texte imprimé] / Bak, A. . - Princeton, NJ : Princeton University Press and the University of Tokyo Press, 1981 . - Viii-268 p.. - (Annals of Mathematics Studies; 098) .
Langues : Anglais
Catégories : 11-XX Number theory:11-02 Research exposition (monographs, survey articles)
11-XX Number theory:11EXX Forms and linear algebraic groups :11E16 General binary quadratic forms
18-XX Category theory; homological algebra :18-02 Research exposition (monographs, survey articles)
18-XX Category theory; homological algebra :18FXX Categories and geometry:18F25 Algebraic $K$-theory and $L$-theory
57-XX Manifolds and cell complexes :57-02 Research exposition (monographs, survey articles)
57-XX Manifolds and cell complexes :57RXX Differential topology :57R67 Surgery obstructions, Wall groupsMots-clés : surgery obstruction groups rings with involution k-theory groups exact sequences morita theory mayer-vietoris sequence approximation square steinberg group form parameter hermitian forms quadratic forms Index. décimale : 18B Publication collective Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 8830 18B10 imprimé / autre CRDM 18/THEORIE DES CATEGORIES, ALGEBRE HOMOLOGIQUE Disponible Local surgery and the exact sequence of a localization for wall groups / Pardon, william
PermalinkQuadratic and hermitian forms / W. Scharlau
PermalinkQuadratic forms in infinite dimensional vecotor spaces / Gross, H.
PermalinkQuadratic forms over Q and Galois extensions of commutative rings / DeMeyer, Frank
PermalinkRepresentations of integers as sums of squares / Emil Grosswald
PermalinkSymmetric bilinear forms / John W. Milnor
PermalinkThe algebraic theory of quadratic forms / Tsit- Yuen Lam
PermalinkUnraveling the integral knot concordance group / Neal W. Stoltzfus
Permalink