A partir de cette page vous pouvez :
Retourner au premier écran avec les dernières notices... |
Catégories
> 70-XX Mechanics of particles and systems > 70HXX Hamiltonian and Lagrangian mechanics > 70H20 Hamilton-Jacobi equations
70H20 Hamilton-Jacobi equations
Affiner la recherche
Leçons et Applications de Géométrie Differentielle et de Mécanique Analytique / Y. Talpaert
Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 12256 104A10 imprimé / autre CRDM 104/LICENCE ET MAITRISE Disponible Two classes of Riemannian manifolds whose geodesic flows are integrable / Kazuyoshi Kiyohara
Titre : Two classes of Riemannian manifolds whose geodesic flows are integrable Type de document : texte imprimé Auteurs : Kazuyoshi Kiyohara Editeur : Providence, R.I. : American Mathematical Society Année de publication : 1997 Collection : Memoirs of the American Mathematical Society, ISSN 0065-9266 num. 619 Importance : 143 p. ISBN/ISSN/EAN : 978-0-8218-0640-1 Langues : Anglais Catégories : 37-XX Dynamical systems and ergodic theory :37DXX Dynamical systems with hyperbolic behavior:37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37-XX Dynamical systems and ergodic theory :37JXX Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems :37J35 Completely integrable systems, topological structure of phase space, integration methods
37-XX Dynamical systems and ergodic theory :37JXX Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems :37J99 None of the above, but in this section
37-XX Dynamical systems and ergodic theory :37KXX Infinite-dimensional Hamiltonian systems :37K10 Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies (KdV, KP, Toda, etc.)
53-XX Differential geometry :53-02 Research exposition (monographs, survey articles)
53-XX Differential geometry :53CXX Global differential geometry :53C22 Geodesics
53-XX Differential geometry :53DXX Symplectic geometry, contact geometry :53D25 Geodesic flows
70-XX Mechanics of particles and systems :70HXX Hamiltonian and Lagrangian mechanics :70H20 Hamilton-Jacobi equationsMots-clés : liouville manifolds classification c_{2pi}-manifolds completely integrable geodesic flows Index. décimale : Mem Two classes of Riemannian manifolds whose geodesic flows are integrable [texte imprimé] / Kazuyoshi Kiyohara . - Providence, R.I. : American Mathematical Society, 1997 . - 143 p. . - (Memoirs of the American Mathematical Society, ISSN 0065-9266; 619) .
ISBN : 978-0-8218-0640-1
Langues : Anglais
Catégories : 37-XX Dynamical systems and ergodic theory :37DXX Dynamical systems with hyperbolic behavior:37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37-XX Dynamical systems and ergodic theory :37JXX Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems :37J35 Completely integrable systems, topological structure of phase space, integration methods
37-XX Dynamical systems and ergodic theory :37JXX Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems :37J99 None of the above, but in this section
37-XX Dynamical systems and ergodic theory :37KXX Infinite-dimensional Hamiltonian systems :37K10 Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies (KdV, KP, Toda, etc.)
53-XX Differential geometry :53-02 Research exposition (monographs, survey articles)
53-XX Differential geometry :53CXX Global differential geometry :53C22 Geodesics
53-XX Differential geometry :53DXX Symplectic geometry, contact geometry :53D25 Geodesic flows
70-XX Mechanics of particles and systems :70HXX Hamiltonian and Lagrangian mechanics :70H20 Hamilton-Jacobi equationsMots-clés : liouville manifolds classification c_{2pi}-manifolds completely integrable geodesic flows Index. décimale : Mem Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 14783 Mem/619 imprimé / autre CRDM Mem/MEMOIRS AMS Disponible