A partir de cette page vous pouvez :
Retourner au premier écran avec les dernières notices... |
Résultat de la recherche
11 résultat(s) recherche sur le mot-clé 'geometric measure theory'
Affiner la recherche Générer le flux rss de la recherche
Geometric measure theory / Federer, H.
Titre : Geometric measure theory Type de document : texte imprimé Auteurs : Federer, H. Editeur : Springer-Verlag Année de publication : 1969 Collection : Die Grundlehren der Mathematischen Wissenschaften num. 153 Importance : xiv - 676 p. Langues : Anglais Mots-clés : geometric measure theory Index. décimale : 28C Monographie Geometric measure theory [texte imprimé] / Federer, H. . - [S.l.] : Springer-Verlag, 1969 . - xiv - 676 p.. - (Die Grundlehren der Mathematischen Wissenschaften; 153) .
Langues : Anglais
Mots-clés : geometric measure theory Index. décimale : 28C Monographie Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 7628 28C77 imprimé / autre CRDM 28/MESURE ET INTEGRATION Disponible Geometric measure theory and the calculus of variations / Frederick J. Jr Almgren ; William K. Allard
Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 15880 49B11 imprimé / autre CRDM 49/CALCUL DES VARIATIONS, CONTROL OPTIMAL Disponible Geometric measure theory / Morgan, Frank
Titre : Geometric measure theory : a beginner's guide Type de document : texte imprimé Auteurs : Morgan, Frank Mention d'édition : 3rd ed. Editeur : Academic Press, Inc. Année de publication : 2000 Importance : ix - 173 p. Langues : Anglais Catégories : 49-XX Calculus of variations and optimal control; optimization :49-01 Instructional exposition (textbooks, tutorial papers, etc.)
49-XX Calculus of variations and optimal control; optimization :49QXX Manifolds :49Q05 Minimal surfaces
49-XX Calculus of variations and optimal control; optimization :49QXX Manifolds :49Q15 Geometric measure and integration theory, integral and normal currentsMots-clés : varifolds area-minimizing hypersurfaces oriented tangent cones rectifiable currents rectifiable sets geometric measure theory Index. décimale : 49C Monographie Geometric measure theory : a beginner's guide [texte imprimé] / Morgan, Frank . - 3rd ed. . - [S.l.] : Academic Press, Inc., 2000 . - ix - 173 p.
Langues : Anglais
Catégories : 49-XX Calculus of variations and optimal control; optimization :49-01 Instructional exposition (textbooks, tutorial papers, etc.)
49-XX Calculus of variations and optimal control; optimization :49QXX Manifolds :49Q05 Minimal surfaces
49-XX Calculus of variations and optimal control; optimization :49QXX Manifolds :49Q15 Geometric measure and integration theory, integral and normal currentsMots-clés : varifolds area-minimizing hypersurfaces oriented tangent cones rectifiable currents rectifiable sets geometric measure theory Index. décimale : 49C Monographie Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 12452 49C42 imprimé / autre CRDM 49/CALCUL DES VARIATIONS, CONTROL OPTIMAL Exclu du prêt Geometric measure theory / Morgan, Frank
Titre : Geometric measure theory : a beginner's guide Type de document : texte imprimé Auteurs : Morgan, Frank Mention d'édition : 2nd ed. Editeur : Academic Press, Inc. Année de publication : 1995 Importance : ix - 173 p. ISBN/ISSN/EAN : 978-0-12-506857-4 Langues : Anglais Catégories : 49-XX Calculus of variations and optimal control; optimization :49-01 Instructional exposition (textbooks, tutorial papers, etc.)
49-XX Calculus of variations and optimal control; optimization :49QXX Manifolds :49Q05 Minimal surfaces
49-XX Calculus of variations and optimal control; optimization :49QXX Manifolds :49Q15 Geometric measure and integration theory, integral and normal currentsMots-clés : varifolds area-minimizing hypersurfaces oriented tangent cones rectifiable currents rectifiable sets geometric measure theory Index. décimale : 49C Monographie Geometric measure theory : a beginner's guide [texte imprimé] / Morgan, Frank . - 2nd ed. . - [S.l.] : Academic Press, Inc., 1995 . - ix - 173 p.
ISBN : 978-0-12-506857-4
Langues : Anglais
Catégories : 49-XX Calculus of variations and optimal control; optimization :49-01 Instructional exposition (textbooks, tutorial papers, etc.)
49-XX Calculus of variations and optimal control; optimization :49QXX Manifolds :49Q05 Minimal surfaces
49-XX Calculus of variations and optimal control; optimization :49QXX Manifolds :49Q15 Geometric measure and integration theory, integral and normal currentsMots-clés : varifolds area-minimizing hypersurfaces oriented tangent cones rectifiable currents rectifiable sets geometric measure theory Index. décimale : 49C Monographie Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 14681 49C48 imprimé / autre CRDM 49/CALCUL DES VARIATIONS, CONTROL OPTIMAL Disponible 12761 49C48 imprimé / autre CRDM 49/CALCUL DES VARIATIONS, CONTROL OPTIMAL Disponible Analysis of and on uniformly rectifiable sets / Guy David
Titre : Analysis of and on uniformly rectifiable sets Type de document : texte imprimé Auteurs : Guy David ; Semmes, Stephen Editeur : Providence, R.I. : American Mathematical Society Année de publication : 1993 Collection : Mathematical Surveys and Monographs num. 38 Importance : xii, 356 ISBN/ISSN/EAN : 978-0-8218-1537-3 Langues : Anglais Catégories : 28-XX Measure and integration :28AXX Classical measure theory:28A75 Length, area, volume, other geometric measure theory
30-XX Functions of a complex variable :30CXX Geometric function theory:30C65 Quasiconformal mappings in $bfR^n$, other generalizations
30-XX Functions of a complex variable :30GXX Generalized function theory:30G35 Functions of hypercomplex variables and generalized variables
42-XX Fourier analysis:42-02 Research exposition (monographs, survey articles)
42-XX Fourier analysis:42BXX Fourier analysis in several variables :42B20 Singular integrals (Calderón-Zygmund, etc.)
49-XX Calculus of variations and optimal control; optimization :49-02 Research exposition (monographs, survey articles)
49-XX Calculus of variations and optimal control; optimization :49QXX Manifolds :49Q15 Geometric measure and integration theory, integral and normal currentsMots-clés : carleson measure singular integrals rectifiability of sets harmonic analysis geometric measure theory lipschitz graph Index. décimale : 42C Monographie Analysis of and on uniformly rectifiable sets [texte imprimé] / Guy David ; Semmes, Stephen . - Providence, R.I. : American Mathematical Society, 1993 . - xii, 356. - (Mathematical Surveys and Monographs; 38) .
ISBN : 978-0-8218-1537-3
Langues : Anglais
Catégories : 28-XX Measure and integration :28AXX Classical measure theory:28A75 Length, area, volume, other geometric measure theory
30-XX Functions of a complex variable :30CXX Geometric function theory:30C65 Quasiconformal mappings in $bfR^n$, other generalizations
30-XX Functions of a complex variable :30GXX Generalized function theory:30G35 Functions of hypercomplex variables and generalized variables
42-XX Fourier analysis:42-02 Research exposition (monographs, survey articles)
42-XX Fourier analysis:42BXX Fourier analysis in several variables :42B20 Singular integrals (Calderón-Zygmund, etc.)
49-XX Calculus of variations and optimal control; optimization :49-02 Research exposition (monographs, survey articles)
49-XX Calculus of variations and optimal control; optimization :49QXX Manifolds :49Q15 Geometric measure and integration theory, integral and normal currentsMots-clés : carleson measure singular integrals rectifiability of sets harmonic analysis geometric measure theory lipschitz graph Index. décimale : 42C Monographie Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 13285 42C87 imprimé / autre CRDM 42/ANALYSE DE FOURIER Disponible Analytic capacity, rectifiability, Menger curvature and the Cauchy integral / Pajot, Hervé
PermalinkCartesian currents in the calculus of variations II / Giaquinta, Mariano
PermalinkExistence and regularity almost everywhere of solutions to elliptic variational problems with constraints / Frederick J. Jr Almgren
PermalinkGeometry of sets and measures in Euclidean spaces / Pertti Mattila
PermalinkUniform rectifiability and quasiminimizing sets of arbitrary codimension / Guy David
PermalinkThe geometry of fractal sets. / Kenneth J. Falconer
Permalink