A partir de cette page vous pouvez :
Retourner au premier écran avec les dernières notices... |
Catégories
> 57-XX Manifolds and cell complexes > 57NXX Topological manifolds > 57N12 Topology of $E^3$ and $S^3$
57N12 Topology of $E^3$ and $S^3$
Affiner la recherche
Algorithmic and Computer Methods for Three-Manifolds / A. T. Fomenko
Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 12124 57C140 imprimé / autre CRDM 57/VARIETES ET COMPLEXES CELLULAIRES Disponible 11723 57C140 imprimé / autre CRDM 57/VARIETES ET COMPLEXES CELLULAIRES Disponible Regular neighbourhoods and canonical decompositions for groups / Scott, Peter
Titre : Regular neighbourhoods and canonical decompositions for groups Type de document : texte imprimé Auteurs : Scott, Peter ; Swarup, Gadde A. Editeur : Paris : Société Mathématiques de France Année de publication : 2003 Collection : Astérisque, ISSN 0303-1179 num. 289 Importance : vi - 233 p. Langues : Français Catégories : 20-XX Group theory and generalizations:20EXX Structure and classification of infinite or finite groups:20E06 Free products, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20-XX Group theory and generalizations:20EXX Structure and classification of infinite or finite groups:20E08 Groups acting on trees
20-XX Group theory and generalizations:20EXX Structure and classification of infinite or finite groups:20E34 General structure theorems
20-XX Group theory and generalizations:20FXX Special aspects of infinite or finite groups:20F65 Geometric group theory
57-XX Manifolds and cell complexes :57MXX Low-dimensional topology:57M07 Topological methods in group theory
57-XX Manifolds and cell complexes :57MXX Low-dimensional topology:57M50 Geometric structures on low-dimensional manifolds
57-XX Manifolds and cell complexes :57NXX Topological manifolds:57N12 Topology of $E^3$ and $S^3$
57-XX Manifolds and cell complexes :57NXX Topological manifolds:57N16 Geometric structures on manifoldsMots-clés : characteristic submanifold regular neighbourhood ends trees splitting canonical decomposition sous-variete caracteristique voisinage regulier bouts arbres eclatement decomposition canonique Index. décimale : AST Regular neighbourhoods and canonical decompositions for groups [texte imprimé] / Scott, Peter ; Swarup, Gadde A. . - Paris : Société Mathématiques de France, 2003 . - vi - 233 p.. - (Astérisque, ISSN 0303-1179; 289) .
Langues : Français
Catégories : 20-XX Group theory and generalizations:20EXX Structure and classification of infinite or finite groups:20E06 Free products, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20-XX Group theory and generalizations:20EXX Structure and classification of infinite or finite groups:20E08 Groups acting on trees
20-XX Group theory and generalizations:20EXX Structure and classification of infinite or finite groups:20E34 General structure theorems
20-XX Group theory and generalizations:20FXX Special aspects of infinite or finite groups:20F65 Geometric group theory
57-XX Manifolds and cell complexes :57MXX Low-dimensional topology:57M07 Topological methods in group theory
57-XX Manifolds and cell complexes :57MXX Low-dimensional topology:57M50 Geometric structures on low-dimensional manifolds
57-XX Manifolds and cell complexes :57NXX Topological manifolds:57N12 Topology of $E^3$ and $S^3$
57-XX Manifolds and cell complexes :57NXX Topological manifolds:57N16 Geometric structures on manifoldsMots-clés : characteristic submanifold regular neighbourhood ends trees splitting canonical decomposition sous-variete caracteristique voisinage regulier bouts arbres eclatement decomposition canonique Index. décimale : AST Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 15093 AST/289 imprimé / autre CRDM AST/ASTÉRISQUE Disponible The geometric topology of 3-manifolds / R. H. Bing
Titre : The geometric topology of 3-manifolds Type de document : texte imprimé Auteurs : R. H. Bing Editeur : Providence, R.I. : American Mathematical Society Année de publication : 1983 Collection : Colloquium Publications num. 40 Importance : x - 238 p. Présentation : ill. Format : 26 cm ISBN/ISSN/EAN : 978-0-8218-1040-8 Langues : Anglais Catégories : 57-XX Manifolds and cell complexes :57-01 Instructional exposition (textbooks, tutorial papers, etc.)
57-XX Manifolds and cell complexes :57MXX Low-dimensional topology:57M35 Dehn's lemma, sphere theorem, loop theorem, asphericity
57-XX Manifolds and cell complexes :57NXX Topological manifolds:57N12 Topology of $E^3$ and $S^3$Mots-clés : Euclidean 3-space combinatorial topology 3-manifolds Dehn’s Lemma Loop Theorem triangulation approximation of continuous maps by PL maps covering spaces fundamental group intersections of spheres and 1- simplexes intersections of surfaces with skeletons Index. décimale : 57C Monographie The geometric topology of 3-manifolds [texte imprimé] / R. H. Bing . - Providence, R.I. : American Mathematical Society, 1983 . - x - 238 p. : ill. ; 26 cm. - (Colloquium Publications; 40) .
ISBN : 978-0-8218-1040-8
Langues : Anglais
Catégories : 57-XX Manifolds and cell complexes :57-01 Instructional exposition (textbooks, tutorial papers, etc.)
57-XX Manifolds and cell complexes :57MXX Low-dimensional topology:57M35 Dehn's lemma, sphere theorem, loop theorem, asphericity
57-XX Manifolds and cell complexes :57NXX Topological manifolds:57N12 Topology of $E^3$ and $S^3$Mots-clés : Euclidean 3-space combinatorial topology 3-manifolds Dehn’s Lemma Loop Theorem triangulation approximation of continuous maps by PL maps covering spaces fundamental group intersections of spheres and 1- simplexes intersections of surfaces with skeletons Index. décimale : 57C Monographie Exemplaires
Code-barres Cote Support Localisation Section Disponibilité 22139 57C209 imprimé / autre CRDM 57/VARIETES ET COMPLEXES CELLULAIRES Disponible